Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).

Identifieur interne : 000900 ( Main/Exploration ); précédent : 000899; suivant : 000901

High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).

Auteurs : A R Wenck [États-Unis] ; M. Quinn ; R W Whetten ; G. Pullman ; R. Sederoff

Source :

RBID : pubmed:10092170

Descripteurs français

English descriptors

Abstract

Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

DOI: 10.1023/a:1006126609534
PubMed: 10092170


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).</title>
<author>
<name sortKey="Wenck, A R" sort="Wenck, A R" uniqKey="Wenck A" first="A R" last="Wenck">A R Wenck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Biotechnology Group, North Carolina State University, Raleigh 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, North Carolina State University, Raleigh 27695</wicri:regionArea>
<wicri:noRegion>Raleigh 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quinn, M" sort="Quinn, M" uniqKey="Quinn M" first="M" last="Quinn">M. Quinn</name>
</author>
<author>
<name sortKey="Whetten, R W" sort="Whetten, R W" uniqKey="Whetten R" first="R W" last="Whetten">R W Whetten</name>
</author>
<author>
<name sortKey="Pullman, G" sort="Pullman, G" uniqKey="Pullman G" first="G" last="Pullman">G. Pullman</name>
</author>
<author>
<name sortKey="Sederoff, R" sort="Sederoff, R" uniqKey="Sederoff R" first="R" last="Sederoff">R. Sederoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10092170</idno>
<idno type="pmid">10092170</idno>
<idno type="doi">10.1023/a:1006126609534</idno>
<idno type="wicri:Area/Main/Corpus">000903</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000903</idno>
<idno type="wicri:Area/Main/Curation">000903</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000903</idno>
<idno type="wicri:Area/Main/Exploration">000903</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).</title>
<author>
<name sortKey="Wenck, A R" sort="Wenck, A R" uniqKey="Wenck A" first="A R" last="Wenck">A R Wenck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Biotechnology Group, North Carolina State University, Raleigh 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, North Carolina State University, Raleigh 27695</wicri:regionArea>
<wicri:noRegion>Raleigh 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quinn, M" sort="Quinn, M" uniqKey="Quinn M" first="M" last="Quinn">M. Quinn</name>
</author>
<author>
<name sortKey="Whetten, R W" sort="Whetten, R W" uniqKey="Whetten R" first="R W" last="Whetten">R W Whetten</name>
</author>
<author>
<name sortKey="Pullman, G" sort="Pullman, G" uniqKey="Pullman G" first="G" last="Pullman">G. Pullman</name>
</author>
<author>
<name sortKey="Sederoff, R" sort="Sederoff, R" uniqKey="Sederoff R" first="R" last="Sederoff">R. Sederoff</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetophenones (pharmacology)</term>
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Agrobacterium tumefaciens (growth & development)</term>
<term>Agrobacterium tumefaciens (pathogenicity)</term>
<term>Base Sequence (MeSH)</term>
<term>Culture Techniques (MeSH)</term>
<term>DNA, Bacterial (analysis)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Pinus taeda (MeSH)</term>
<term>Transformation, Genetic (drug effects)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (analyse)</term>
<term>ADN bactérien (génétique)</term>
<term>Acétophénones (pharmacologie)</term>
<term>Agrobacterium tumefaciens (croissance et développement)</term>
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Agrobacterium tumefaciens (pathogénicité)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Pinus taeda (MeSH)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Techniques de culture (MeSH)</term>
<term>Transformation génétique (effets des médicaments et des substances chimiques)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetophenones</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ADN bactérien</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Transformation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Agrobacterium tumefaciens</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétophénones</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Culture Techniques</term>
<term>Dose-Response Relationship, Drug</term>
<term>Molecular Sequence Data</term>
<term>Pinus taeda</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Pinus taeda</term>
<term>Relation dose-effet des médicaments</term>
<term>Séquence nucléotidique</term>
<term>Techniques de culture</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10092170</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>39</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1999</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).</ArticleTitle>
<Pagination>
<MedlinePgn>407-16</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wenck</LastName>
<ForeName>A R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, North Carolina State University, Raleigh 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quinn</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whetten</LastName>
<ForeName>R W</ForeName>
<Initials>RW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pullman</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000098">Acetophenones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>866P45Y84S</RegistryNumber>
<NameOfSubstance UI="C051667">acetosyringone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000098" MajorTopicYN="N">Acetophenones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046508" MajorTopicYN="N">Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041603" MajorTopicYN="N">Pinus taeda</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NASA">
<Keyword MajorTopicYN="N">NASA Discipline Plant Biology</Keyword>
<Keyword MajorTopicYN="N">Non-NASA Center</Keyword>
</KeywordList>
<InvestigatorList>
<Investigator ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>C S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>NC St U, Raleigh</Affiliation>
</AffiliationInfo>
</Investigator>
</InvestigatorList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>3</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10092170</ArticleId>
<ArticleId IdType="doi">10.1023/a:1006126609534</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1991 Oct;97(2):832-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1071-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Oct;188(3):439-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1996 Jun;14(6):736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Apr;92(4):1226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Sep;25(6):989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Aug 23;273(5278):1107-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8688097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jul 1;132(1):6-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6312838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Oct;79(2):568-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1975 Nov 5;98(3):503-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1195397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Sep;19(6):925-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1511138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1989 May;8(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Mar 25;23(6):1087-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7603-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 May;11(3):365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):971-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 Oct;169(10):4417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2443480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1996 Jun;14(6):745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Oct;9(6):303-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Pullman, G" sort="Pullman, G" uniqKey="Pullman G" first="G" last="Pullman">G. Pullman</name>
<name sortKey="Quinn, M" sort="Quinn, M" uniqKey="Quinn M" first="M" last="Quinn">M. Quinn</name>
<name sortKey="Sederoff, R" sort="Sederoff, R" uniqKey="Sederoff R" first="R" last="Sederoff">R. Sederoff</name>
<name sortKey="Whetten, R W" sort="Whetten, R W" uniqKey="Whetten R" first="R W" last="Whetten">R W Whetten</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Wenck, A R" sort="Wenck, A R" uniqKey="Wenck A" first="A R" last="Wenck">A R Wenck</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000900 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000900 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10092170
   |texte=   High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10092170" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024